Difference between revisions of "Spring 2017 CS292F Syllabus"
From courses
Line 33: | Line 33: | ||
** [https://arxiv.org/pdf/1411.4555.pdf Show and Tell: A Neural Image Caption Generator, CVPR 2015] | ** [https://arxiv.org/pdf/1411.4555.pdf Show and Tell: A Neural Image Caption Generator, CVPR 2015] | ||
** [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej Karpathy and Li Fei-Fei, CVPR 2015] | ** [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej Karpathy and Li Fei-Fei, CVPR 2015] | ||
+ | ** [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhu_Aligning_Books_and_ICCV_2015_paper.pdf Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, Zhu et al., ICCV 2015] | ||
*05/23 Deep Reinforcement Learning 1 | *05/23 Deep Reinforcement Learning 1 | ||
** [https://aclweb.org/anthology/D16-1127, Deep Reinforcement Learning for Dialogue Generation, Li et al., EMNLP 2016] | ** [https://aclweb.org/anthology/D16-1127, Deep Reinforcement Learning for Dialogue Generation, Li et al., EMNLP 2016] |
Revision as of 18:52, 5 April 2017
- 04/04 Introduction, logistics, NLP, and deep learning.
- 04/06 Tips for a successful class project
- 04/11 NLP Tasks
- 04/13 Word embeddings
- 04/18 Neural network basics (Project proposal due, HW1 out)
- 04/20 Recursive Neural Networks
- 04/25 RNNs (NLP seminar: Stanford NLP's Jiwei Li 04/26)
- 04/27 LSTMs/GRUs
- 05/02 Sequence-to-sequence models and neural machine translation (HW1 due and HW2 out)
- 05/04 Attention mechanisms
- 05/09 Project: mid-term presentation (1)
- 05/11 Project: mid-term presentation (2)
- 05/16 Convolutional Neural Networks (HW2 due)
- 05/18 Language and vision
- 05/23 Deep Reinforcement Learning 1
- 05/25 Deep Reinforcement Learning 2
- 05/30 Unsupervised Learning
- 06/01 Project: final presentation (1)
- 06/06 Project: final presentation (2)
- 06/08 Project: final presentation (3)
- 06/10 23:59PM PT Project Final Report Due.