Difference between revisions of "Group Reading F16"
From courses
(Created page with "*10/13: **Presenter: ** *10/20: **Presenter: Thien Hoang, Compositional Vector Space Models for Knowledge Base Completion. Arvind Neelakantan, Benjamin Roth and Andrew McCal...") |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
*10/13: | *10/13: | ||
− | **Presenter: | + | **Presenter: William Wang, Random Walk Inference and Learning in A Large Scale Knowledge Base, Ni Lao, Tom Mitchell, William W. Cohen. http://www.cs.cmu.edu/~nlao/publication/2011/2011.emnlp.paper.pdf |
− | ** | + | **Presenter: Tyler Vuong, Translating Embeddings for Modeling Multi-relational Data Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran et al.,https://www.utc.fr/~bordesan/dokuwiki/_media/en/transe_nips13.pdf |
*10/20: | *10/20: | ||
Line 8: | Line 8: | ||
*10/27: | *10/27: | ||
− | **Presenter: Peter Zhe Fu, GANs: Generative Adversarial Networks, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio | + | **Presenter: Peter Zhe Fu, GANs: Generative Adversarial Networks, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. https://arxiv.org/abs/1406.2661 |
− | https://arxiv.org/abs/1406.2661 | + | **Presenter: Shaoyi Zhang, SeqGAN: SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, https://arxiv.org/abs/1609.05473 |
− | **Presenter: Shaoyi Zhang, SeqGAN: SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient | ||
− | https://arxiv.org/abs/1609.05473 | ||
− | *11/3 | + | *11/3: No meeting. EMNLP + midterm. |
+ | |||
+ | *11/10: | ||
+ | ** Presenter: Metehan Ozten: Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning, Karthik Narasimhan, Adam Yala, Regina Barzilay. EMNLP 2016. https://arxiv.org/pdf/1603.07954v3.pdf | ||
+ | ** Presenter: Ke Ni: Learning to compose neural networks for question answering, Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein. NAACL 2016.https://arxiv.org/abs/1601.01705 | ||
+ | ** Some good EMNLP papers: | ||
+ | ***Rationalizing Neural Predictions, Tao Lei, Regina Barzilay, Tommi Jaakkola, https://arxiv.org/abs/1606.04155 | ||
+ | ***Deep Reinforcement Learning for Dialogue Generation, Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky, https://arxiv.org/abs/1606.01541 | ||
+ | ***Sequence-to-Sequence Learning as Beam-Search Optimization, Sam Wiseman and Alexander M. Rush, https://arxiv.org/pdf/1606.02960.pdf | ||
+ | ***Mining Inference Formulas by Goal-Directed Random Walks, Mining Inference Formulas by Goal-Directed Random Walks, https://www.aclweb.org/anthology/D/D16/D16-1145.pdf | ||
+ | |||
+ | *11/17: | ||
+ | ** Presenter: Daniel Auto-Encoding Variational Bayes, Kingma and Welling, ICLR 2014, https://arxiv.org/pdf/1312.6114v10.pdf | ||
+ | ** NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING, ICLR 2017, http://openreview.net/pdf?id=r1Ue8Hcxg | ||
+ | |||
+ | *11/24: Thanksgiving. No Meeting. |
Latest revision as of 15:12, 10 November 2016
- 10/13:
- Presenter: William Wang, Random Walk Inference and Learning in A Large Scale Knowledge Base, Ni Lao, Tom Mitchell, William W. Cohen. http://www.cs.cmu.edu/~nlao/publication/2011/2011.emnlp.paper.pdf
- Presenter: Tyler Vuong, Translating Embeddings for Modeling Multi-relational Data Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran et al.,https://www.utc.fr/~bordesan/dokuwiki/_media/en/transe_nips13.pdf
- 10/20:
- Presenter: Thien Hoang, Compositional Vector Space Models for Knowledge Base Completion. Arvind Neelakantan, Benjamin Roth and Andrew McCallum. https://people.cs.umass.edu/~arvind/acl2015.pdf
- Presenter: Darren Huang, Relation Classification via Convolutional Deep Neural Network, Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou and Jun Zhao. http://www.aclweb.org/anthology/C14-1220
- 10/27:
- Presenter: Peter Zhe Fu, GANs: Generative Adversarial Networks, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. https://arxiv.org/abs/1406.2661
- Presenter: Shaoyi Zhang, SeqGAN: SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, https://arxiv.org/abs/1609.05473
- 11/3: No meeting. EMNLP + midterm.
- 11/10:
- Presenter: Metehan Ozten: Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning, Karthik Narasimhan, Adam Yala, Regina Barzilay. EMNLP 2016. https://arxiv.org/pdf/1603.07954v3.pdf
- Presenter: Ke Ni: Learning to compose neural networks for question answering, Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein. NAACL 2016.https://arxiv.org/abs/1601.01705
- Some good EMNLP papers:
- Rationalizing Neural Predictions, Tao Lei, Regina Barzilay, Tommi Jaakkola, https://arxiv.org/abs/1606.04155
- Deep Reinforcement Learning for Dialogue Generation, Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky, https://arxiv.org/abs/1606.01541
- Sequence-to-Sequence Learning as Beam-Search Optimization, Sam Wiseman and Alexander M. Rush, https://arxiv.org/pdf/1606.02960.pdf
- Mining Inference Formulas by Goal-Directed Random Walks, Mining Inference Formulas by Goal-Directed Random Walks, https://www.aclweb.org/anthology/D/D16/D16-1145.pdf
- 11/17:
- Presenter: Daniel Auto-Encoding Variational Bayes, Kingma and Welling, ICLR 2014, https://arxiv.org/pdf/1312.6114v10.pdf
- NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING, ICLR 2017, http://openreview.net/pdf?id=r1Ue8Hcxg
- 11/24: Thanksgiving. No Meeting.