Difference between revisions of "Winter 2018 CS291A Syllabus"
From courses
Line 10: | Line 10: | ||
** : [https://arxiv.org/abs/1609.04747 An overview of gradient descent optimization algorithms, Sebastian Ruder, Arxiv 2016] | ** : [https://arxiv.org/abs/1609.04747 An overview of gradient descent optimization algorithms, Sebastian Ruder, Arxiv 2016] | ||
*02/01 Recursive Neural Networks | *02/01 Recursive Neural Networks | ||
+ | **: [http://www.robotics.stanford.edu/~ang/papers/emnlp12-SemanticCompositionalityRecursiveMatrixVectorSpaces.pdf Semantic Compositionality through Recursive Matrix-Vector Spaces, Socher et al., EMNLP 2012] | ||
** : [https://nlp.stanford.edu/pubs/SocherBauerManningNg_ACL2013.pdf Parsing with Compositional Vector Grammars, Socher et al., ACL 2013] | ** : [https://nlp.stanford.edu/pubs/SocherBauerManningNg_ACL2013.pdf Parsing with Compositional Vector Grammars, Socher et al., ACL 2013] | ||
** : [https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, Socher et al., EMNLP 2013] | ** : [https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, Socher et al., EMNLP 2013] |
Revision as of 19:58, 15 January 2018
- 01/16 Introduction, logistics, NLP, and deep learning.
- 01/18 Tips for a successful class project
- 01/23 NLP Tasks
- 01/25 Word embeddings
- : Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space, Neelakantan et al., EMNLP 2014
- : Glove: Global Vectors for Word Representation, J Pennington, R Socher, CD Manning - EMNLP, 2014
- : AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes, Rothe and Schutze, ACL 2015
- 01/30 Neural network basics (Project proposal due to Grader: Ke Ni <ke00@umail.ucsb.edu> , HW1 out)
- 02/01 Recursive Neural Networks
- 02/06 RNNs
- 02/08 LSTMs/GRUs
- 02/13 Sequence-to-sequence models and neural machine translation (HW1 due and HW2 out)
- 02/15 Attention mechanisms
- 02/20 Project: mid-term presentation (1)
- 02/22 Project: mid-term presentation (2)
- 02/27 Convolutional Neural Networks (HW2 due)
- 03/01 Language and vision
- 03/06 Deep Reinforcement Learning 1
- 03/08 Deep Reinforcement Learning 2
- 03/13 Unsupervised Learning
- 03/15 Project: final presentation (1)
- 03/23 23:59PM PT Project Final Report Due. Grader: Ke Ni <ke00@umail.ucsb.edu>