Difference between revisions of "Winter 2018 CS291A Syllabus"

From courses
Jump to: navigation, search
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
*01/16 Introduction, logistics, NLP, and deep learning.
 +
*01/18 Tips for a successful class project
 +
*01/23 NLP Tasks
 
*01/25 Word embeddings  
 
*01/25 Word embeddings  
 
**Conner : [https://people.cs.umass.edu/~arvind/emnlp2014.pdf Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space, Neelakantan et al., EMNLP 2014]
 
**Conner : [https://people.cs.umass.edu/~arvind/emnlp2014.pdf Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space, Neelakantan et al., EMNLP 2014]
Line 4: Line 7:
 
**Wenhu : [http://www.aclweb.org/anthology/P15-1173 AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes, Rothe and Schutze, ACL 2015]
 
**Wenhu : [http://www.aclweb.org/anthology/P15-1173 AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes, Rothe and Schutze, ACL 2015]
 
*01/30 Neural network basics (Project proposal due to Grader: Ke Ni < ke00@ucsb.edu> , HW1 out)
 
*01/30 Neural network basics (Project proposal due to Grader: Ke Ni < ke00@ucsb.edu> , HW1 out)
**Mohith : [http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Learning representations by back-propagating errors, Nature, 1986]
+
**Jashanvir : [http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Learning representations by back-propagating errors, Nature, 1986]
**Dan : [https://arxiv.org/abs/1609.04747 An overview of gradient descent optimization algorithms, Sebastian Ruder, Arxiv 2016]
+
**Metehan : [https://arxiv.org/abs/1609.04747 An overview of gradient descent optimization algorithms, Sebastian Ruder, Arxiv 2016]
 
**Vivek P.: [http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al., JMLR 2014]
 
**Vivek P.: [http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al., JMLR 2014]
 
*02/01 Recursive Neural Networks  
 
*02/01 Recursive Neural Networks  
Line 35: Line 38:
 
**Xiyou : [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej Karpathy and Li Fei-Fei, CVPR 2015]
 
**Xiyou : [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej Karpathy and Li Fei-Fei, CVPR 2015]
 
**Richika : [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhu_Aligning_Books_and_ICCV_2015_paper.pdf Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, Zhu et al., ICCV 2015]
 
**Richika : [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhu_Aligning_Books_and_ICCV_2015_paper.pdf Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, Zhu et al., ICCV 2015]
*02/27 Deep Reinforcement Learning 1 (HW2 due)
+
*02/27 Deep Reinforcement Learning 1 (HW2 due: 02/26 Monday 11:59pm)
 
**Sharon : [https://aclweb.org/anthology/D16-1127, Deep Reinforcement Learning for Dialogue Generation, Li et al., EMNLP 2016]
 
**Sharon : [https://aclweb.org/anthology/D16-1127, Deep Reinforcement Learning for Dialogue Generation, Li et al., EMNLP 2016]
 
**David : [https://arxiv.org/abs/1603.07954 Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning, Narasimh et al., EMNLP 2016]
 
**David : [https://arxiv.org/abs/1603.07954 Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning, Narasimh et al., EMNLP 2016]
Line 45: Line 48:
 
*03/06 Unsupervised Learning
 
*03/06 Unsupervised Learning
 
**Hongmin : [http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf Generative Adversarial Nets, Goodfellow et al., NIPS 2014]
 
**Hongmin : [http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf Generative Adversarial Nets, Goodfellow et al., NIPS 2014]
**Austin : [https://arxiv.org/abs/1312.6114 Auto-encoding variational Bayes, Kingma and Welling, ICLR 2014]
+
**Burak : [https://arxiv.org/abs/1312.6114 Auto-encoding variational Bayes, Kingma and Welling, ICLR 2014]
 
**Pushkar : [https://arxiv.org/pdf/1511.06434.pdf%C3%AF%C2%BC%E2%80%B0 Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, Redford et al., 2015]
 
**Pushkar : [https://arxiv.org/pdf/1511.06434.pdf%C3%AF%C2%BC%E2%80%B0 Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, Redford et al., 2015]
 +
**Liu : [http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf Semi-supervised Sequence Learning, Dai et al., NIPS 2015]
 
*03/08 Project: final presentation (1)  
 
*03/08 Project: final presentation (1)  
 +
**Andy Chen
 +
**Ashwini Patil, Sai Nikhil Maram
 +
**David Bernadett
 +
**Ishani Gupta, Nidhi Hiremath
 +
**Wenhu Chen, Zhiyu Chen
 
*03/13 Project: final presentation (2)
 
*03/13 Project: final presentation (2)
 +
**Ismet Burak Kadron
 +
**Jiawei Wu, Jing Qian
 +
**XiyouZhou, JiangyueCai
 +
**Maohua Zhu, Liu Liu
 +
**Pushkar Shukla, Richika Sharan
 +
**Sanjana Sahayaraj, Vivek Adarsh
 +
**Esther, Lukas
 
*03/15 Project: final presentation (3)
 
*03/15 Project: final presentation (3)
 +
**Sharon Levy
 +
**Conner Vercellino, Calvin Wang
 +
**Trevor Morris, Chani Jindal
 +
**Vivek Pradhan, Abhay Chennagiri
 +
**Jashanvir Singh Taggar, Metehan Cekic
 +
**Yanju Chen, Hongmin Wang
 +
 
*03/23 23:59PM PT Project Final Report Due. Grader: Ke Ni <ke00@ucsb.edu>
 
*03/23 23:59PM PT Project Final Report Due. Grader: Ke Ni <ke00@ucsb.edu>

Latest revision as of 11:43, 6 March 2018

  • 03/23 23:59PM PT Project Final Report Due. Grader: Ke Ni <ke00@ucsb.edu>