Difference between revisions of "Fall 2017 CS595I Advanced NLP/ML Seminar"

From courses
Jump to: navigation, search
 
(18 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
If you registered this class, you should contact the instructor to lead the discussion of one paper below.
 
If you registered this class, you should contact the instructor to lead the discussion of one paper below.
 
If you don't lead the discussion, you will then need to write a 3-page final report in NIPS 2017 style,  
 
If you don't lead the discussion, you will then need to write a 3-page final report in NIPS 2017 style,  
comparing any two of the papers below.
+
comparing any two of the papers below. '''Due: 12/18, 23:59pm PT''' to william@cs.ucsb.edu.
  
 
*09/26:  
 
*09/26:  
Line 24: Line 24:
 
*10/24:
 
*10/24:
 
** John: Dict2Vec: Learning Word Embeddings using Dictionaires, Julien Tissier and Christophe Gravier and Amaury Habrard http://aclweb.org/anthology/D17-1024
 
** John: Dict2Vec: Learning Word Embeddings using Dictionaires, Julien Tissier and Christophe Gravier and Amaury Habrard http://aclweb.org/anthology/D17-1024
 +
** Jiawei: Adversarial Examples for Evaluating Reading Comprehension Systems Robin Jia and Percy Liang https://arxiv.org/abs/1707.07328
 +
 +
*10/31:
 +
** Shayan: A simple neural network module for relational reasoning, Santoro et al., Arxiv https://arxiv.org/abs/1706.01427
 +
** Trevor: Multi-Task Video Captioning with Video and Entailment Generation, ACL 2017 Outstanding Paper https://arxiv.org/pdf/1704.07489.pdf
 +
 +
*11/07:
 +
** Gavin: Hindsight Experience Replay, Andrychowicz et al, https://arxiv.org/pdf/1707.01495.pdf
 +
** Arya: The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process, Mei and Eisner, NIPS 2017 https://arxiv.org/pdf/1612.09328.pdf
 +
 +
*11/14:
 +
** Richard: Understanding Black-box Predictions via Influence Functions, Koh and Liang, ICML 2017 Best Paper. https://arxiv.org/pdf/1703.04730.pdf
 +
** Ke: Deep reinforcement learning from human preferences, Christiano et al., https://arxiv.org/pdf/1706.03741.pdf
 +
 +
*11/21:
 +
** Conner: Attention Is All You Need, Vaswani et al., 2017 https://arxiv.org/abs/1706.03762
 +
** Xiaoyong: Adversarial Feature Matching for Text Generation, Zhang et al., ICML 2017 http://proceedings.mlr.press/v70/zhang17b/zhang17b.pdf
 +
 +
*11/28:
 +
** Austin: Deep Reinforcement Learning that Matters, Henderson et al., arxiv https://arxiv.org/pdf/1709.06560.pdf
 +
** Adam: Generalization in Deep Learning, https://arxiv.org/pdf/1710.05468.pdf
 +
 +
*12/05: No meeting, NIPS conference.
 +
 +
*12/12: No meeting, NAACL deadline.
  
 
===Word Embeddings===
 
===Word Embeddings===
Line 29: Line 54:
  
 
===Relational Learning and Reasoning===
 
===Relational Learning and Reasoning===
* A simple neural network module for relational reasoning, Santoro et al., Arxiv https://arxiv.org/abs/1706.01427
 
 
* Adversarial Training for Relation Extraction, Yi Wu, David Bamman and Stuart Russell https://people.eecs.berkeley.edu/~russell/papers/emnlp17-relation.pdf
 
* Adversarial Training for Relation Extraction, Yi Wu, David Bamman and Stuart Russell https://people.eecs.berkeley.edu/~russell/papers/emnlp17-relation.pdf
* Adversarial Examples for Evaluating Reading Comprehension Systems Robin Jia and Percy Liang https://arxiv.org/abs/1707.07328
 
  
 
===Reinforcement Learning===
 
===Reinforcement Learning===
 
* Modular Multitask Reinforcement Learning with Policy Sketches, Andreas et al., ICML 2017 https://arxiv.org/pdf/1611.01796.pdf
 
* Modular Multitask Reinforcement Learning with Policy Sketches, Andreas et al., ICML 2017 https://arxiv.org/pdf/1611.01796.pdf
* Deep reinforcement learning from human preferences, Christiano et al., https://arxiv.org/pdf/1706.03741.pdf
 
* Deep Reinforcement Learning that Matters, Henderson et al., arxiv https://arxiv.org/pdf/1709.06560.pdf
 
 
* Robust Imitation of Diverse Behaviors, Wang et al. 2017, https://arxiv.org/pdf/1707.02747.pdf
 
* Robust Imitation of Diverse Behaviors, Wang et al. 2017, https://arxiv.org/pdf/1707.02747.pdf
 
* Programmable Agents, Denil et al., https://arxiv.org/pdf/1706.06383v1.pdf
 
* Programmable Agents, Denil et al., https://arxiv.org/pdf/1706.06383v1.pdf
 
* Expected Policy Gradients, Kamil Ciosek, Shimon Whiteson, https://arxiv.org/abs/1706.05374
 
* Expected Policy Gradients, Kamil Ciosek, Shimon Whiteson, https://arxiv.org/abs/1706.05374
* Hindsight Experience Replay, Andrychowicz et al, https://arxiv.org/pdf/1707.01495.pdf
 
 
* Reinforcement Learning with Deep Energy-Based Policies  Haarnoja et al, ICML 2017 http://proceedings.mlr.press/v70/haarnoja17a/haarnoja17a.pdf
 
* Reinforcement Learning with Deep Energy-Based Policies  Haarnoja et al, ICML 2017 http://proceedings.mlr.press/v70/haarnoja17a/haarnoja17a.pdf
 
* Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, Kulkarni et al., 2016, https://arxiv.org/pdf/1604.06057.pdf
 
* Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, Kulkarni et al., 2016, https://arxiv.org/pdf/1604.06057.pdf
Line 46: Line 66:
 
* Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning, Gu et al., NIPS 2017 https://arxiv.org/abs/1706.00387
 
* Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning, Gu et al., NIPS 2017 https://arxiv.org/abs/1706.00387
 
* Sequence Level Training with Recurrent Neural Networks https://arxiv.org/pdf/1511.06732.pdf
 
* Sequence Level Training with Recurrent Neural Networks https://arxiv.org/pdf/1511.06732.pdf
 
===Learning (General)===
 
* Understanding Black-box Predictions via Influence Functions, Koh and Liang, ICML 2017 Best Paper. https://arxiv.org/pdf/1703.04730.pdf
 
*The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process, Mei and Eisner, NIPS 2017 https://arxiv.org/pdf/1612.09328.pdf
 
  
 
===Generation===
 
===Generation===
 
* Generating Sentences by Editing Prototypes, Guu et al., arxiv https://arxiv.org/abs/1709.08878
 
* Generating Sentences by Editing Prototypes, Guu et al., arxiv https://arxiv.org/abs/1709.08878
* Multi-Task Video Captioning with Video and Entailment Generation, ACL 2017 Outstanding Paper https://arxiv.org/pdf/1704.07489.pdf
 
* Adversarial Feature Matching for Text Generation, Zhang et al., ICML 2017 http://proceedings.mlr.press/v70/zhang17b/zhang17b.pdf
 
 
* Adversarially Regularized Autoehttp://www.aclweb.org/anthology/D17-1120ncoders for Generating Discrete Structures, Zhao et al., https://arxiv.org/pdf/1706.04223.pdf
 
* Adversarially Regularized Autoehttp://www.aclweb.org/anthology/D17-1120ncoders for Generating Discrete Structures, Zhao et al., https://arxiv.org/pdf/1706.04223.pdf
  

Latest revision as of 17:00, 28 November 2017

Time: Tuesday 5-6pm. Location: HFH 1132.

If you registered this class, you should contact the instructor to lead the discussion of one paper below. If you don't lead the discussion, you will then need to write a 3-page final report in NIPS 2017 style, comparing any two of the papers below. Due: 12/18, 23:59pm PT to william@cs.ucsb.edu.

  • 09/26:
    • Mahnaz Summer research presentation: Reinforced Pointer-Generator Network for Abstractive Summarization.
    • Xin: FeUdal Networks for Hierarchical Reinforcement Learning, Vezhnevets et al., ICML 2017 https://arxiv.org/pdf/1703.01161.pdf
  • 12/05: No meeting, NIPS conference.
  • 12/12: No meeting, NAACL deadline.

Word Embeddings

Relational Learning and Reasoning

Reinforcement Learning

Generation

Dialog

NLP for Computational Social Science