Difference between revisions of "Fall 2017 CS595I Advanced NLP/ML Seminar"

From courses
Jump to: navigation, search
Line 1: Line 1:
 
*Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, Kulkarni et al., 2016, https://arxiv.org/pdf/1604.06057.pdf
 
*Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, Kulkarni et al., 2016, https://arxiv.org/pdf/1604.06057.pdf
 
*Reinforcement Learning with Deep Energy-Based Policies  Haarnoja et al, ICML 2017 http://proceedings.mlr.press/v70/haarnoja17a/haarnoja17a.pdf
 
*Reinforcement Learning with Deep Energy-Based Policies  Haarnoja et al, ICML 2017 http://proceedings.mlr.press/v70/haarnoja17a/haarnoja17a.pdf
*MUSE: Modularizing Unsupervised Sense Embeddings, Lee and Chen, EMNLP 2017 https://arxiv.org/pdf/1704.04601.pdf
 
 
*Modular Multitask Reinforcement Learning with Policy Sketches, Andreas et al., ICML 2017 https://arxiv.org/pdf/1611.01796.pdf
 
*Modular Multitask Reinforcement Learning with Policy Sketches, Andreas et al., ICML 2017 https://arxiv.org/pdf/1611.01796.pdf
 
* Device Placement Optimization with Reinforcement Learning, Azalia Mirhoseini et al. https://arxiv.org/pdf/1706.04972.pdf
 
* Device Placement Optimization with Reinforcement Learning, Azalia Mirhoseini et al. https://arxiv.org/pdf/1706.04972.pdf

Revision as of 23:17, 10 August 2017