Difference between revisions of "Winter 2018 CS291A Syllabus"

From courses
Jump to: navigation, search
(update student choices)
Line 11: Line 11:
 
**Vivek : [http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al., JMLR 2014]
 
**Vivek : [http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al., JMLR 2014]
 
*02/01 Recursive Neural Networks  
 
*02/01 Recursive Neural Networks  
** : [http://www.robotics.stanford.edu/~ang/papers/emnlp12-SemanticCompositionalityRecursiveMatrixVectorSpaces.pdf Semantic Compositionality through Recursive Matrix-Vector Spaces, Socher et al., EMNLP 2012]
+
**April : [http://www.robotics.stanford.edu/~ang/papers/emnlp12-SemanticCompositionalityRecursiveMatrixVectorSpaces.pdf Semantic Compositionality through Recursive Matrix-Vector Spaces, Socher et al., EMNLP 2012]
 
** : [https://nlp.stanford.edu/pubs/SocherBauerManningNg_ACL2013.pdf Parsing with Compositional Vector Grammars, Socher et al., ACL 2013]
 
** : [https://nlp.stanford.edu/pubs/SocherBauerManningNg_ACL2013.pdf Parsing with Compositional Vector Grammars, Socher et al., ACL 2013]
 
** : [https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, Socher et al., EMNLP 2013]
 
** : [https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, Socher et al., EMNLP 2013]
Line 17: Line 17:
 
**Lukas : [https://pdfs.semanticscholar.org/8adb/8257a423f55b1f20ba62c8b20118d76a25c7.pdf A Learning Algorithm for Continually Running Fully Recurrent Neural Networks, Ronald J. Williams and David Zipser, 1989]
 
**Lukas : [https://pdfs.semanticscholar.org/8adb/8257a423f55b1f20ba62c8b20118d76a25c7.pdf A Learning Algorithm for Continually Running Fully Recurrent Neural Networks, Ronald J. Williams and David Zipser, 1989]
 
**Yifu : [http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf Recurrent neural network based language model]  
 
**Yifu : [http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf Recurrent neural network based language model]  
** : [https://arxiv.org/pdf/1308.0850.pdf Generating Sequences With Recurrent Neural Networks, Alex Graves, 2013 arxiv]
+
**John : [https://arxiv.org/pdf/1308.0850.pdf Generating Sequences With Recurrent Neural Networks, Alex Graves, 2013 arxiv]
 
*02/08 LSTMs/GRUs
 
*02/08 LSTMs/GRUs
 
**Liu : [http://www.bioinf.jku.at/publications/older/2604.pdf Long short term memory, S. Hochreiter and J. Schmidhuber, Neural Computation, 1997]
 
**Liu : [http://www.bioinf.jku.at/publications/older/2604.pdf Long short term memory, S. Hochreiter and J. Schmidhuber, Neural Computation, 1997]
** : [https://arxiv.org/pdf/1409.1259.pdf On the Properties of Neural Machine Translation: Encoder–Decoder Approaches, Cho et al., 2014]
+
**Zhiyu : [https://arxiv.org/pdf/1409.1259.pdf On the Properties of Neural Machine Translation: Encoder–Decoder Approaches, Cho et al., 2014]
 
** : [https://arxiv.org/pdf/1502.02367v3.pdf Gated Feedback Recurrent Neural Networks, Chung et al., ICML 2015]
 
** : [https://arxiv.org/pdf/1502.02367v3.pdf Gated Feedback Recurrent Neural Networks, Chung et al., ICML 2015]
 
*02/13 Sequence-to-sequence models and neural machine translation (HW1 due and HW2 out)
 
*02/13 Sequence-to-sequence models and neural machine translation (HW1 due and HW2 out)
** : [https://arxiv.org/pdf/1406.1078.pdf Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation, Cho et al., EMNLP 2014]
+
**Ryan : [https://arxiv.org/pdf/1406.1078.pdf Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation, Cho et al., EMNLP 2014]
 
**Yanju : [https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf Sequence to Sequence Learning with Neural Networks, Sutskever et al., NIPS 2014]
 
**Yanju : [https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf Sequence to Sequence Learning with Neural Networks, Sutskever et al., NIPS 2014]
 
** : [http://www.aclweb.org/anthology/P16-1100 Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models, Luong and Manning, ACL 2016]
 
** : [http://www.aclweb.org/anthology/P16-1100 Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models, Luong and Manning, ACL 2016]
 
*02/15 Attention mechanisms
 
*02/15 Attention mechanisms
 
**Jing : [https://arxiv.org/pdf/1409.0473.pdf NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE, Bahdanau et al., ICLR 2015]
 
**Jing : [https://arxiv.org/pdf/1409.0473.pdf NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE, Bahdanau et al., ICLR 2015]
** : [https://arxiv.org/abs/1506.03340 Teaching Machines to Read and Comprehend, NIPS 2015]
+
**Abhay : [https://arxiv.org/abs/1506.03340 Teaching Machines to Read and Comprehend, NIPS 2015]
** : [http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf End-to-end memory networks, NIPS 2015]
+
**Ashwini : [http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf End-to-end memory networks, NIPS 2015]
 
*02/20 Convolutional Neural Networks  (Mid-term report due to Grader: Ke Ni <ke00@ucsb.edu>)
 
*02/20 Convolutional Neural Networks  (Mid-term report due to Grader: Ke Ni <ke00@ucsb.edu>)
** : [http://ronan.collobert.com/pub/matos/2011_nlp_jmlr.pdf Natural Language Processing (Almost) from Scratch, Collobert et al., JMLR 2011]
+
**Esther : [http://ronan.collobert.com/pub/matos/2011_nlp_jmlr.pdf Natural Language Processing (Almost) from Scratch, Collobert et al., JMLR 2011]
** : [https://arxiv.org/pdf/1510.03820.pdf A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification, Zhang and Wallace, Arxiv 2015]
+
**Shabnam : [https://arxiv.org/pdf/1510.03820.pdf A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification, Zhang and Wallace, Arxiv 2015]
 
**Jiawei : [http://papers.nips.cc/paper/5550-convolutional-neural-network-architectures-for-matching-natural-language-sentences Convolutional Neural Network Architectures for Matching Natural Language Sentences, Hu et al., NIPS 2014]
 
**Jiawei : [http://papers.nips.cc/paper/5550-convolutional-neural-network-architectures-for-matching-natural-language-sentences Convolutional Neural Network Architectures for Matching Natural Language Sentences, Hu et al., NIPS 2014]
 
*02/22 Language and vision
 
*02/22 Language and vision
Line 39: Line 39:
 
**Richika : [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhu_Aligning_Books_and_ICCV_2015_paper.pdf Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, Zhu et al., ICCV 2015]
 
**Richika : [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhu_Aligning_Books_and_ICCV_2015_paper.pdf Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, Zhu et al., ICCV 2015]
 
*02/27 Deep Reinforcement Learning 1 (HW2 due)
 
*02/27 Deep Reinforcement Learning 1 (HW2 due)
** : [https://aclweb.org/anthology/D16-1127, Deep Reinforcement Learning for Dialogue Generation, Li et al., EMNLP 2016]
+
**Karthik : [https://aclweb.org/anthology/D16-1127, Deep Reinforcement Learning for Dialogue Generation, Li et al., EMNLP 2016]
 
**David : [https://arxiv.org/abs/1603.07954 Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning, Narasimh et al., EMNLP 2016]
 
**David : [https://arxiv.org/abs/1603.07954 Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning, Narasimh et al., EMNLP 2016]
** : [http://www.aclweb.org/anthology/P16-1153 Deep Reinforcement Learning with a Natural Language Action Space, He et al., ACL 2016]
+
**Michael : [http://www.aclweb.org/anthology/P16-1153 Deep Reinforcement Learning with a Natural Language Action Space, He et al., ACL 2016]
 
*03/01 Deep Reinforcement Learning 2
 
*03/01 Deep Reinforcement Learning 2
 
**Trevor : [https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf Playing Atari with Deep Reinforcement Learning, Mnih et al., NIPS workshop 2013]
 
**Trevor : [https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf Playing Atari with Deep Reinforcement Learning, Mnih et al., NIPS workshop 2013]

Revision as of 19:19, 18 January 2018