Difference between revisions of "Winter 2018 CS291A Syllabus"

From courses
Jump to: navigation, search
(sync with homepage latest info)
Line 7: Line 7:
 
** : [http://www.aclweb.org/anthology/P15-1173 AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes, Rothe and Schutze, ACL 2015]
 
** : [http://www.aclweb.org/anthology/P15-1173 AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes, Rothe and Schutze, ACL 2015]
 
*01/30 Neural network basics (Project proposal due to Grader: Ke Ni < ke00@ucsb.edu> , HW1 out)
 
*01/30 Neural network basics (Project proposal due to Grader: Ke Ni < ke00@ucsb.edu> , HW1 out)
** : [http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Learning representations by back-propagating errors, Nature, 1986]
+
**Mohith : [http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Learning representations by back-propagating errors, Nature, 1986]
 
**Dan : [https://arxiv.org/abs/1609.04747 An overview of gradient descent optimization algorithms, Sebastian Ruder, Arxiv 2016]
 
**Dan : [https://arxiv.org/abs/1609.04747 An overview of gradient descent optimization algorithms, Sebastian Ruder, Arxiv 2016]
**Vivek : [http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al., JMLR 2014]
+
**Vivek P.: [http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al., JMLR 2014]
 
*02/01 Recursive Neural Networks  
 
*02/01 Recursive Neural Networks  
 
**April : [http://www.robotics.stanford.edu/~ang/papers/emnlp12-SemanticCompositionalityRecursiveMatrixVectorSpaces.pdf Semantic Compositionality through Recursive Matrix-Vector Spaces, Socher et al., EMNLP 2012]
 
**April : [http://www.robotics.stanford.edu/~ang/papers/emnlp12-SemanticCompositionalityRecursiveMatrixVectorSpaces.pdf Semantic Compositionality through Recursive Matrix-Vector Spaces, Socher et al., EMNLP 2012]
** : [https://nlp.stanford.edu/pubs/SocherBauerManningNg_ACL2013.pdf Parsing with Compositional Vector Grammars, Socher et al., ACL 2013]
+
**zhiyu : [https://nlp.stanford.edu/pubs/SocherBauerManningNg_ACL2013.pdf Parsing with Compositional Vector Grammars, Socher et al., ACL 2013]
 
** : [https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, Socher et al., EMNLP 2013]
 
** : [https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, Socher et al., EMNLP 2013]
 
*02/06 RNNs
 
*02/06 RNNs
Line 20: Line 20:
 
*02/08 LSTMs/GRUs
 
*02/08 LSTMs/GRUs
 
**Liu : [http://www.bioinf.jku.at/publications/older/2604.pdf Long short term memory, S. Hochreiter and J. Schmidhuber, Neural Computation, 1997]
 
**Liu : [http://www.bioinf.jku.at/publications/older/2604.pdf Long short term memory, S. Hochreiter and J. Schmidhuber, Neural Computation, 1997]
**Zhiyu : [https://arxiv.org/pdf/1409.1259.pdf On the Properties of Neural Machine Translation: Encoder–Decoder Approaches, Cho et al., 2014]
+
**: [https://arxiv.org/pdf/1409.1259.pdf On the Properties of Neural Machine Translation: Encoder–Decoder Approaches, Cho et al., 2014]
** : [https://arxiv.org/pdf/1502.02367v3.pdf Gated Feedback Recurrent Neural Networks, Chung et al., ICML 2015]
+
**Vivek A.: [https://arxiv.org/pdf/1502.02367v3.pdf Gated Feedback Recurrent Neural Networks, Chung et al., ICML 2015]
 
*02/13 Sequence-to-sequence models and neural machine translation (HW1 due and HW2 out)
 
*02/13 Sequence-to-sequence models and neural machine translation (HW1 due and HW2 out)
 
**Ryan : [https://arxiv.org/pdf/1406.1078.pdf Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation, Cho et al., EMNLP 2014]
 
**Ryan : [https://arxiv.org/pdf/1406.1078.pdf Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation, Cho et al., EMNLP 2014]
 
**Yanju : [https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf Sequence to Sequence Learning with Neural Networks, Sutskever et al., NIPS 2014]
 
**Yanju : [https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf Sequence to Sequence Learning with Neural Networks, Sutskever et al., NIPS 2014]
** : [http://www.aclweb.org/anthology/P16-1100 Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models, Luong and Manning, ACL 2016]
+
**Karthik : [http://www.aclweb.org/anthology/P16-1100 Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models, Luong and Manning, ACL 2016]
 
*02/15 Attention mechanisms
 
*02/15 Attention mechanisms
 
**Jing : [https://arxiv.org/pdf/1409.0473.pdf NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE, Bahdanau et al., ICLR 2015]
 
**Jing : [https://arxiv.org/pdf/1409.0473.pdf NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE, Bahdanau et al., ICLR 2015]

Revision as of 20:46, 20 January 2018