Difference between revisions of "Fall 2017 CS595I Advanced NLP/ML Seminar"

From courses
Jump to: navigation, search
Line 1: Line 1:
*A Brief Survey of Deep Reinforcement Learning,  Arulkumaran et al., IEEE Signal Processing Magazine 2017 https://arxiv.org/pdf/1708.05866.pdf
+
===Relational Learning and Reasoning===
*Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, Kulkarni et al., 2016, https://arxiv.org/pdf/1604.06057.pdf
+
* Modeling Relational Data with Graph Convolutional Networks, Schlichtkrull et al., https://arxiv.org/pdf/1703.06103.pdf
*Reinforcement Learning with Deep Energy-Based Policies  Haarnoja et al, ICML 2017 http://proceedings.mlr.press/v70/haarnoja17a/haarnoja17a.pdf
+
* A simple neural network module for relational reasoning, Santoro et al., Arxiv https://arxiv.org/abs/1706.01427
*Modular Multitask Reinforcement Learning with Policy Sketches, Andreas et al., ICML 2017 https://arxiv.org/pdf/1611.01796.pdf
+
 
 +
===Reinforcement Learning===
 +
* A Brief Survey of Deep Reinforcement Learning,  Arulkumaran et al., IEEE Signal Processing Magazine 2017 https://arxiv.org/pdf/1708.05866.pdf
 +
* Programmable Agents, Denil et al., https://arxiv.org/pdf/1706.06383v1.pdf
 +
* Hindsight Experience Replay, Andrychowicz et al, https://arxiv.org/pdf/1707.01495.pdf
 +
* Reinforcement Learning with Deep Energy-Based Policies  Haarnoja et al, ICML 2017 http://proceedings.mlr.press/v70/haarnoja17a/haarnoja17a.pdf
 +
* Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, Kulkarni et al., 2016, https://arxiv.org/pdf/1604.06057.pdf
 +
* Modular Multitask Reinforcement Learning with Policy Sketches, Andreas et al., ICML 2017 https://arxiv.org/pdf/1611.01796.pdf
 
* Device Placement Optimization with Reinforcement Learning, Azalia Mirhoseini et al. https://arxiv.org/pdf/1706.04972.pdf
 
* Device Placement Optimization with Reinforcement Learning, Azalia Mirhoseini et al. https://arxiv.org/pdf/1706.04972.pdf
*Latent Intention Dialogue Models, Wen et al., ICML 2017  https://arxiv.org/pdf/1705.10229.pdf
+
 
*Modeling Relational Data with Graph Convolutional Networks, Schlichtkrull et al., https://arxiv.org/pdf/1703.06103.pdf
+
===Learning (General)===
 +
* An Overview of Multi-Task Learning in Deep Neural Networks, Sebastian Ruder, https://arxiv.org/abs/1706.05098
 +
* Understanding Black-box Predictions via Influence Functions, Koh and Liang, ICML 2017 Best Paper. https://arxiv.org/pdf/1703.04730.pdf
 
*The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process, Mei and Eisner, NIPS 2017 https://arxiv.org/pdf/1612.09328.pdf
 
*The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process, Mei and Eisner, NIPS 2017 https://arxiv.org/pdf/1612.09328.pdf
 +
 +
===Generation===
 +
* Multi-Task Video Captioning with Video and Entailment Generation, ACL 2017 Outstanding Paper https://arxiv.org/pdf/1704.07489.pdf
 
* Adversarial Feature Matching for Text Generation, Zhang et al., ICML 2017 http://proceedings.mlr.press/v70/zhang17b/zhang17b.pdf
 
* Adversarial Feature Matching for Text Generation, Zhang et al., ICML 2017 http://proceedings.mlr.press/v70/zhang17b/zhang17b.pdf
*Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses, ACL 2017 Outstanding Paper http://aclweb.org/anthology/P/P17/P17-1103.pdf
 
* Multi-Task Video Captioning with Video and Entailment Generation, ACL 2017 Outstanding Paper https://arxiv.org/pdf/1704.07489.pdf
 
* A simple neural network module for relational reasoning, Santoro et al., Arxiv https://arxiv.org/abs/1706.01427
 
* Natural Language Does Not Emerge ‘Naturally’ in Multi-Agent Dialog, Kottur et al., EMNLP best paper, https://arxiv.org/pdf/1706.08502.pdf
 
 
* Adversarial Feature Matching for Text Generation, Zhang et al., ICML 2017 https://arxiv.org/pdf/1706.03850.pdf
 
* Adversarial Feature Matching for Text Generation, Zhang et al., ICML 2017 https://arxiv.org/pdf/1706.03850.pdf
 
* Adversarially Regularized Autoencoders for Generating Discrete Structures, Zhao et al., https://arxiv.org/pdf/1706.04223.pdf
 
* Adversarially Regularized Autoencoders for Generating Discrete Structures, Zhao et al., https://arxiv.org/pdf/1706.04223.pdf
* An Overview of Multi-Task Learning in Deep Neural Networks, Sebastian Ruder, https://arxiv.org/abs/1706.05098
+
 
* Programmable Agents, Denil et al., https://arxiv.org/pdf/1706.06383v1.pdf
+
===Dialog===
* Hindsight Experience Replay, Andrychowicz et al, https://arxiv.org/pdf/1707.01495.pdf
+
* Reinforcement learning for spoken dialogue systems: Comparing strengths and weaknesses for practical deployment, DoD workshop, Interspeech 2006 https://pdfs.semanticscholar.org/b75b/e9388fefc44a20ceb40f6e0b916f0bbd7bbe.pdf
* Understanding Black-box Predictions via Influence Functions, Koh and Liang, ICML 2017 Best Paper. https://arxiv.org/pdf/1703.04730.pdf
+
* Reinforcement learning for spoken dialogue systems, Singh et al., NIPS 2000 http://papers.nips.cc/paper/1775-reinforcement-learning-for-spoken-dialogue-systems.pdf
 
* Sample-efficient Actor-Critic Reinforcement Learning with Supervised Data for Dialogue Management, Su et al., SIGDIAL 2017 https://arxiv.org/pdf/1707.00130.pdf
 
* Sample-efficient Actor-Critic Reinforcement Learning with Supervised Data for Dialogue Management, Su et al., SIGDIAL 2017 https://arxiv.org/pdf/1707.00130.pdf
 
* Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning, Peng et al., EMNLP 2017. https://arxiv.org/abs/1704.03084
 
* Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning, Peng et al., EMNLP 2017. https://arxiv.org/abs/1704.03084
 +
* Natural Language Does Not Emerge ‘Naturally’ in Multi-Agent Dialog, Kottur et al., EMNLP best paper, https://arxiv.org/pdf/1706.08502.pdf
 +
* Latent Intention Dialogue Models, Wen et al., ICML 2017  https://arxiv.org/pdf/1705.10229.pdf
 +
* Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses, ACL 2017 Outstanding Paper http://aclweb.org/anthology/P/P17/P17-1103.pdf

Revision as of 16:09, 4 September 2017

Relational Learning and Reasoning

Reinforcement Learning

Learning (General)

Generation

Dialog