Difference between revisions of "Fall 2017 CS595I Advanced NLP/ML Seminar"

From courses
Jump to: navigation, search
Line 15: Line 15:
 
* Robust Imitation of Diverse Behaviors, Wang et al. 2017, https://arxiv.org/pdf/1707.02747.pdf
 
* Robust Imitation of Diverse Behaviors, Wang et al. 2017, https://arxiv.org/pdf/1707.02747.pdf
 
* Programmable Agents, Denil et al., https://arxiv.org/pdf/1706.06383v1.pdf
 
* Programmable Agents, Denil et al., https://arxiv.org/pdf/1706.06383v1.pdf
 +
* Expected Policy Gradients, Kamil Ciosek, Shimon Whiteson, https://arxiv.org/abs/1706.05374
 
* Hindsight Experience Replay, Andrychowicz et al, https://arxiv.org/pdf/1707.01495.pdf
 
* Hindsight Experience Replay, Andrychowicz et al, https://arxiv.org/pdf/1707.01495.pdf
 
* Reinforcement Learning with Deep Energy-Based Policies  Haarnoja et al, ICML 2017 http://proceedings.mlr.press/v70/haarnoja17a/haarnoja17a.pdf
 
* Reinforcement Learning with Deep Energy-Based Policies  Haarnoja et al, ICML 2017 http://proceedings.mlr.press/v70/haarnoja17a/haarnoja17a.pdf

Revision as of 12:00, 13 September 2017

Word Embeddings

Relational Learning and Reasoning

Reinforcement Learning

Learning (General)

Generation

Dialog

NLP for Computational Social Science

Analyzing Language in Fake News and Political Fact-Checking, Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana Volkova and Yejin Choi https://www.cs.jhu.edu/~svitlana/papers/RCYVC_EMNLP2017.pdf