Difference between revisions of "Winter 2018 CS291A Syllabus"
From courses
Line 7: | Line 7: | ||
**Wenhu : [http://www.aclweb.org/anthology/P15-1173 AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes, Rothe and Schutze, ACL 2015] | **Wenhu : [http://www.aclweb.org/anthology/P15-1173 AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes, Rothe and Schutze, ACL 2015] | ||
*01/30 Neural network basics (Project proposal due to Grader: Ke Ni < ke00@ucsb.edu> , HW1 out) | *01/30 Neural network basics (Project proposal due to Grader: Ke Ni < ke00@ucsb.edu> , HW1 out) | ||
− | ** | + | ** : [http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Learning representations by back-propagating errors, Nature, 1986] |
− | ** | + | ** : [https://arxiv.org/abs/1609.04747 An overview of gradient descent optimization algorithms, Sebastian Ruder, Arxiv 2016] |
**Vivek P.: [http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al., JMLR 2014] | **Vivek P.: [http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al., JMLR 2014] | ||
*02/01 Recursive Neural Networks | *02/01 Recursive Neural Networks |
Revision as of 09:26, 29 January 2018
- 01/16 Introduction, logistics, NLP, and deep learning.
- 01/18 Tips for a successful class project
- 01/23 NLP Tasks
- 01/25 Word embeddings
- Conner : Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space, Neelakantan et al., EMNLP 2014
- Sanjana : Glove: Global Vectors for Word Representation, J Pennington, R Socher, CD Manning - EMNLP, 2014
- Wenhu : AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes, Rothe and Schutze, ACL 2015
- 01/30 Neural network basics (Project proposal due to Grader: Ke Ni < ke00@ucsb.edu> , HW1 out)
- 02/01 Recursive Neural Networks
- 02/06 RNNs
- 02/08 LSTMs/GRUs
- 02/13 Sequence-to-sequence models and neural machine translation (HW1 due and HW2 out)
- Ryan : Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation, Cho et al., EMNLP 2014
- Yanju : Sequence to Sequence Learning with Neural Networks, Sutskever et al., NIPS 2014
- Karthik : Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models, Luong and Manning, ACL 2016
- 02/15 Attention mechanisms
- 02/20 Convolutional Neural Networks (Mid-term report due to Grader: Ke Ni <ke00@ucsb.edu>)
- Esther : Natural Language Processing (Almost) from Scratch, Collobert et al., JMLR 2011
- Maohua : A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification, Zhang and Wallace, Arxiv 2015
- Jiawei : Convolutional Neural Network Architectures for Matching Natural Language Sentences, Hu et al., NIPS 2014
- 02/22 Language and vision
- Sai : Show and Tell: A Neural Image Caption Generator, CVPR 2015
- Xiyou : Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej Karpathy and Li Fei-Fei, CVPR 2015
- Richika : Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, Zhu et al., ICCV 2015
- 02/27 Deep Reinforcement Learning 1 (HW2 due)
- Sharon : Deep Reinforcement Learning for Dialogue Generation, Li et al., EMNLP 2016
- David : Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning, Narasimh et al., EMNLP 2016
- Michael : Deep Reinforcement Learning with a Natural Language Action Space, He et al., ACL 2016
- 03/01 Deep Reinforcement Learning 2
- 03/06 Unsupervised Learning
- 03/08 Project: final presentation (1)
- 03/13 Project: final presentation (2)
- 03/15 Project: final presentation (3)
- 03/23 23:59PM PT Project Final Report Due. Grader: Ke Ni <ke00@ucsb.edu>