Spring 2017 CS292F Syllabus
From courses
Revision as of 14:50, 6 April 2017 by Wangwilliamyang (talk | contribs)
- 04/04 Introduction, logistics, NLP, and deep learning.
- 04/06 Tips for a successful class project
- 04/11 NLP Tasks
- 04/13 Word embeddings
- Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space, Neelakantan et al., EMNLP 2014
- Keqian Li: Glove: Global Vectors for Word Representation, J Pennington, R Socher, CD Manning - EMNLP, 2014
- AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes, Rothe and Schutze, ACL 2015
- 04/18 Neural network basics (Project proposal due, HW1 out)
- 04/20 Recursive Neural Networks
- 04/25 RNNs (NLP seminar: Stanford NLP's Jiwei Li 04/26)
- 04/27 LSTMs/GRUs
- 05/02 Sequence-to-sequence models and neural machine translation (HW1 due and HW2 out)
- 05/04 Attention mechanisms
- 05/09 Project: mid-term presentation (1)
- 05/11 Project: mid-term presentation (2)
- 05/16 Convolutional Neural Networks (HW2 due)
- 05/18 Language and vision
- Shiliang Tang: Show and Tell: A Neural Image Caption Generator, CVPR 2015
- Aditya Jonnalagadda: Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej Karpathy and Li Fei-Fei, CVPR 2015
- Appannacharya Kalyan Tej Javvadi: Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, Zhu et al., ICCV 2015
- 05/23 Deep Reinforcement Learning 1
- 05/25 Deep Reinforcement Learning 2
- 05/30 Unsupervised Learning
- 06/01 Project: final presentation (1)
- 06/06 Project: final presentation (2)
- 06/08 Project: final presentation (3)
- 06/10 23:59PM PT Project Final Report Due.