Group Reading F16
From courses
Revision as of 20:01, 3 November 2016 by Wangwilliamyang (talk | contribs)
- 10/13:
- Presenter: William Wang, Random Walk Inference and Learning in A Large Scale Knowledge Base, Ni Lao, Tom Mitchell, William W. Cohen. http://www.cs.cmu.edu/~nlao/publication/2011/2011.emnlp.paper.pdf
- Presenter: Tyler Vuong, Translating Embeddings for Modeling Multi-relational Data Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran et al.,https://www.utc.fr/~bordesan/dokuwiki/_media/en/transe_nips13.pdf
- 10/20:
- Presenter: Thien Hoang, Compositional Vector Space Models for Knowledge Base Completion. Arvind Neelakantan, Benjamin Roth and Andrew McCallum. https://people.cs.umass.edu/~arvind/acl2015.pdf
- Presenter: Darren Huang, Relation Classification via Convolutional Deep Neural Network, Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou and Jun Zhao. http://www.aclweb.org/anthology/C14-1220
- 10/27:
- Presenter: Peter Zhe Fu, GANs: Generative Adversarial Networks, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. https://arxiv.org/abs/1406.2661
- Presenter: Shaoyi Zhang, SeqGAN: SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, https://arxiv.org/abs/1609.05473
- 11/3: No meeting. EMNLP + midterm.
- 11/10:
- Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning, Karthik Narasimhan, Adam Yala, Regina Barzilay. EMNLP 2016. https://arxiv.org/pdf/1603.07954v3.pdf
- Learning to compose neural networks for question answering, Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein. NAACL 2016.https://arxiv.org/abs/1601.01705